Find the LCM and HCF of the following pairs of integers and verify that LCM Ă— HCF = Product of the integers:
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54
TO FIND: LCM and HCF of following pairs of integersÂ
TO VERIFY: L.C.M $\times$ H.C.F $=$ product of the numbers
(i) 26 and 91
Let us first find the factors of 26 and 91
$26=2 \times 13$
$91=7 \times 13$
L.C.M of 26 , and $91=2 \times 7 \times 13$
L.C.M of 26, and $91=182$
H.C.F of 26, and $91=13$
We know that,
L. C. $M \times H .$ C. $F=$ First number $\times$ Second number
$\Rightarrow 182 \times 13=26 \times 91$
$\Rightarrow 2366=2366$
Hence verified
(ii) 510 and 92
Let us first find the factors of 510 and 92
$510=2 \times 3 \times 5 \times 17$
$92=2^{2} \times 23$
L.C.M of 510 and $92=2^{2} \times 3 \times 5 \times 23 \times 17$
L.C.M of 510 and $92=23460$
H.C.F of 510 and $92=2$
We know that,
L.C.M $\times$ H.C.F $=$ First Number $\times$ Second Number
$23460 \times 2=510 \times 92$
$46920=46920$
Hence verified
(iii) 336 and 54
Let us first find the factors of 336 and 54
$336=2^{4} \times 3 \times 7$
$54=2 \times 3^{3}$
L.C.M of 336 and $54=2^{4} \times 3^{3} \times 7$
L.C.M of 336 and $54=3024$
H.C.F of 336 and $54=6$
We know that,
L.C.M $\times$ H.C.F $=$ First Number $\times$ Second Nuber
$3024 \times 6=336 \times 54$
$18144=18144$
Hence verified