Find the inverse of the matrix $\left[\begin{array}{cc}\cot \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.
$A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$\therefore|A|=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0$
$A$ is a singular matrix. Therefore, it is invertible.
Let $C_{i j}$ be a cofactor of $a_{i j}$ in $A$.
The cofactors of element $A$ are given by
$C_{11}=\cos \theta$
$C_{12}=\sin \theta$
$C_{21}=-\sin \theta$
$C_{22}=\cos \theta$
Now,
$\operatorname{adj} A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]^{T}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$