Find the inverse of each of the following matrices by using elementary row transformations:
$A=\left[\begin{array}{ll}2 & 5\end{array}\right.$
$\left.\begin{array}{ll}1 & 3\end{array}\right]$
We know
$A=I A$
$\Rightarrow\left[\begin{array}{ll}2-1 & 5-3\end{array}\right.$
$\left.\begin{array}{ll}1 & 3\end{array}\right]=\left[\begin{array}{ll}1-0 & 0-1\end{array}\right.$
$0 \quad 1] A \quad\left[\right.$ Applying $\left.R_{1} \rightarrow R_{1}-R_{2}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 2\end{array}\right.$
$\left.\begin{array}{ll}1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & -1\end{array}\right.$
$\begin{array}{ll}0 & 1] A\end{array}$t.$
$\Rightarrow\left[\begin{array}{ll}1 & 2\end{array}\right.$
$1-1 \quad 3-2]=\left[\begin{array}{ll}1 & -1\end{array}\right.$
$\begin{array}{lll}0-1 & 1+1] A & \text { [Applying } R_{2} \rightarrow R_{2}-R_{1} \text { ] }\end{array}$
$\Rightarrow\left[\begin{array}{ll}1 & 2\end{array}\right.$
$0 \quad 1]=\left[\begin{array}{ll}1 & -1\end{array}\right.$
$\begin{array}{ll}-1 & 2] A\end{array}$
$\Rightarrow\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\left.\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{ll}1+2 & -1-4\end{array}\right.$
$\begin{array}{ll}-1 & 2] A\end{array}$ [Applying $R_{1} \rightarrow R_{1}-2 R_{2}$ ]
$\Rightarrow\left[\begin{array}{ll}1 & 0\end{array}\right.$
$0 \quad 1]=\left[\begin{array}{ll}3 & -5\end{array}\right.$
$\begin{array}{ll}-1 & 2] A\end{array}$
$\Rightarrow A^{-1}=\left[\begin{array}{ll}3 & -5\end{array}\right.$
$\left.\begin{array}{ll}-1 & 2\end{array}\right]$