Find the inverse of each of the following matrices by using elementary row transformations:
$\left[\begin{array}{cc}7 & 1 \\ 4 & -3\end{array}\right]$
$A=\left[\begin{array}{ll}7 & 1\end{array}\right.$
$4-3]$
We know
$A=I A$
$\Rightarrow\left[\begin{array}{ll}7 & 1\end{array}\right.$
$4-3]=\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\begin{array}{ll}0 & 1] A\end{array}$
$4-3]=\left[\begin{array}{ll}\frac{1}{7} & 0\end{array}\right.$
$0 \quad 1] A$ (Applying $R_{1} \rightarrow \frac{1}{7} R_{1}$ )
$\Rightarrow\left[\begin{array}{ll}1 & \frac{1}{7}\end{array}\right.$
$\left.0-\frac{25}{7}\right]=\left[\begin{array}{ll}\frac{1}{7} & 0\end{array}\right.$
$\left.-\frac{4}{7} \quad 1\right] A$ (Applying $R_{2} \rightarrow R_{2}-4 R_{1}$ )
$\Rightarrow\left[\begin{array}{ll}1 & \frac{1}{7}\end{array}\right.$
$\left.\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{ll}\frac{1}{7} & 0\end{array}\right.$
$\left.\frac{4}{25}-\frac{7}{25}\right] A \quad$ (Applying $R_{2} \rightarrow-\frac{7}{25} R_{2}$ )
$\Rightarrow\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\left.\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{ll}\frac{3}{25} & \frac{1}{25}\end{array}\right.$
$\left.\frac{4}{25}-\frac{7}{25}\right] A$ (Applying $R_{1} \rightarrow R_{1}-\frac{1}{7} R_{2}$ )
$\therefore A^{-1}=\frac{1}{25}\left[\begin{array}{ll}3 & 1\end{array}\right.$
$4-7]$