Find the inverse of each of the following matrices by using elementary row transformations:
$\left[\begin{array}{cc}1 & 6 \\ -3 & 5\end{array}\right]$
$A=\left[\begin{array}{ll}1 & 6\end{array}\right.$
$\left.\begin{array}{ll}-3 & 5\end{array}\right]$
We know
$A=I A$
$\Rightarrow\left[\begin{array}{ll}1 & 6\end{array}\right.$
$-3 \quad 5]=\left[\begin{array}{ll}1 & 0\end{array}\right.$
$0 \quad$ 1] $A$
$\Rightarrow\left[\begin{array}{ll}1 & 6\end{array}\right.$
$-3+3 \quad 5+18]=\left[\begin{array}{ll}1 & 0\end{array}\right.$
$0+3 \quad 1+0] A$
$\left[\right.$ Applying $\left.R_{2} \rightarrow R_{2}+3 R_{1}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 6\end{array}\right.$
$0 \quad 23]=\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\begin{array}{ll}3 & 1] A\end{array}$
$\Rightarrow\left[\begin{array}{lll}1 & 6-6\end{array}\right.$
$0 \quad 23]=\left[\begin{array}{ll}1-\frac{18}{23} & 0-\frac{6}{23}\end{array}\right.$
$3 \quad$ 1] $A \quad$ [Applying $\left.R_{1} \rightarrow R_{1}-\frac{6}{23} R_{2}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\left.\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{ll}5 / 23 & -6 / 23\end{array}\right.$
$3 / 23 \quad 1 / 23] A \quad\left[\right.$ Applying $\left.R_{2} \rightarrow \frac{1}{23} R_{2}\right]$
$\Rightarrow A^{-1}=\left[\begin{array}{ll}5 / 23 & -6 / 23\end{array}\right.$
$3 / 23 \quad 1 / 23]=\frac{1}{23}\left[\begin{array}{ll}5 & -6\end{array}\right.$
$\left.\begin{array}{ll}3 & 1\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{23}\left[\begin{array}{ll}5 & -6\end{array}\right.$
$3 \quad 1]$