Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7$
Given:- Function $\mathrm{f}(\mathrm{x})=\frac{1}{4} \mathrm{x}^{4}+\frac{2}{3} \mathrm{x}^{3}-\frac{5}{2} \mathrm{x}^{2}-6 \mathrm{x}+7$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7$
$\Rightarrow f(x)=\frac{d}{d x}\left(\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7\right)$
$\Rightarrow f^{\prime}(x)=x^{3}+2 x^{2}-5 x-6$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow x^{3}+2 x^{2}-5 x-6=0$
$\Rightarrow(x+1)(x-2)(x+3)=0$
$\Rightarrow x=-1,2,-3$
clearly, $f^{\prime}(x)>0$ if $-3
and $f^{\prime}(x)<0$ if $x<-3$ and $-3 Thus, $f(x)$ increases on $(-3,-1) \cup(2, \infty)$ and $f(x)$ is decreasing on interval $(\infty,-3) \cup(-1,2)$