Find the intervals in which the following functions are increasing or decreasing.
Given:- Function $f(x)=2 x^{3}-24 x+7$
Theorem:- Let f be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-'
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-24 x+7$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(2 x^{3}-24 x+7\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-24$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 6 x^{2}-24>0$
$\Rightarrow x^{2}<\frac{24}{6}$
$\Rightarrow x^{2}<4$
$\Rightarrow x<-2,+2$
$\Rightarrow x \in(-\infty,-2)$ and $x \in(2, \infty)$
Thus $f(x)$ is increasing on interval $(-\infty,-2) \cup(2, \infty)$
Again, For $f(x)$ to be increasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow 6 x^{2}-24<0$
$\Rightarrow x^{2}>\frac{24}{6}$
$\Rightarrow x^{2}<4$
$\Rightarrow x>-1$
$\Rightarrow x \in(-1, \infty)$
Thus $f(x)$ is decreasing on interval $x \in(-1, \infty)$