Find the intervals in which the following functions are increasing or decreasing.
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
Given:- Function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(3 x^{4}-4 x^{3}-12 x^{2}+5\right)$
$\Rightarrow f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x$
$\Rightarrow f^{\prime}(x)=12 x\left(x^{2}-x-2\right)$
For $f(x)$ to be increasing, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow 12 \mathrm{x}\left(\mathrm{x}^{2}-\mathrm{x}-2\right)>0$
$\Rightarrow \mathrm{x}\left(\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-2\right)>0$
$\Rightarrow \mathrm{x}(\mathrm{x}-2)(\mathrm{x}+1)>0$
$\Rightarrow-1<\mathrm{x}<0$ and $\mathrm{x}>2$
$\Rightarrow \mathrm{x} \in(-1,0) \cup(2, \infty)$
Thus $f(x)$ is increasing on interval $(-1,0) \cup(2, \infty)$
Again, For $f(x)$ to be decreasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow 12 x\left(x^{2}-x-2\right)<0$
$\Rightarrow x\left(x^{2}-2 x+x-2\right)<0$
$\Rightarrow x(x-2)(x+1)<0$
$\Rightarrow-\infty $\Rightarrow x \in(-\infty,-1) \cup(0,2)$ Thus $f(x)$ is decreasing on interval $(-\infty,-1) \cup(0,2)$