Find the intervals in which the following functions are increasing or decreasing.
$f(x)=5 x^{\frac{3}{2}}-3 x^{\frac{5}{2}}, x>0$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{\frac{3}{2}}-3 \mathrm{x}^{\frac{5}{2}}, \mathrm{x}>0$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(5 \mathrm{x}^{\frac{2}{2}}-3 \mathrm{x}^{\frac{5}{2}}\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{15}{2} \mathrm{x}^{\frac{1}{2}}-\frac{15}{2} \mathrm{x}^{\frac{3}{2}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{15}{2} \mathrm{x}^{\frac{1}{2}}(1-\mathrm{x})$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow \frac{15}{2} x^{\frac{1}{2}}(1-x)=0$
$\Rightarrow x^{\frac{1}{2}}(1-x)=0$
$\Rightarrow x=0,1$
Since $x>0$, therefore only check the range on the positive side of the number line.
clearly, $f^{\prime}(x)>0$ if $0 and $f^{\prime}(x)<0$ if $x>1$ Thus, $f(x)$ increases on $(0,1)$ and $f(x)$ is decreasing on interval $x \in(1, \infty)$