Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{4}-4 x^{3}+4 x^{2}+15$
Given:- Function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{3}+4 \mathrm{x}^{2}+15$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{4}-4 x^{3}+4 x^{2}+15$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{4}-4 x^{3}+4 x^{2}+15\right)$
$\Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 4 x^{3}-12 x^{2}+8 x=0$
$\Rightarrow 4\left(x^{3}-3 x^{2}+2 x\right)=0$
$\Rightarrow x\left(x^{2}-3 x+2\right)=0$
$\Rightarrow x\left(x^{2}-2 x-x+2\right)=0$
$\Rightarrow x(x-2)(x-1)$
$\Rightarrow x=0,1,2$
clearly, $f^{\prime}(x)>0$ if $0
and $f^{\prime}(x)<0$ if $x<0$ and $1 Thus, $f(x)$ increases on $(0,1) \cup(2, \infty)$ and $f(x)$ is decreasing on interval $(-\infty, 0) \cup(1,2)$