Find the intervals in which $f(x)$ is increasing or decreasing:
i. $f(x)=x|x|, x \in R$
ii. $f(x)=\sin x+|\sin x|, 0 iii. $f(x)=\sin x(1+\cos x), 0
(i): Consider the given function,
$f(x)=x|x|, x \in R$
$\Rightarrow \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}-\mathrm{x}^{2}, \mathrm{x}<0 \\ \mathrm{x}^{2}, \mathrm{x}>0\end{array}\right.$
$\Rightarrow \mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}-2 \mathrm{x}, \mathrm{x}<0 \\ 2 \mathrm{x}, \mathrm{x}>0\end{array}\right.$
$\Rightarrow f^{\prime}(x)>0$
Therefore, $f(x)$ is an increasing function for all real values.
(ii): Consider the given function,
$f(x)=\sin x+|\sin x|, 0 $\Rightarrow \mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}2 \sin \mathrm{x}, 0<\mathrm{x} \leq \pi \\ 0, \pi<\mathrm{x} \leq 2 \pi\end{array}\right.$ $\Rightarrow \mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}2 \cos \mathrm{x}, 0<\mathrm{x} \leq \pi \\ 0, \pi<\mathrm{x} \leq 2 \pi\end{array}\right.$ The function $2 \cos x$ will be positive between $\left(0, \frac{\pi}{2}\right)$ Hence the function $f(x)$ is increasing in the interval $\left(0, \frac{\pi}{2}\right)$ The function $2 \cos x$ will be negative between $\left(\frac{\pi}{2}, \pi\right)$ Hence the function $f(x)$ is decreasing in the interval $\left(\frac{\pi}{2}, \pi\right)$ The value of $f^{\prime}(x)=0$, when, $\pi Therefore, the function $f(x)$ is neither increasing nor decreasing in the interval $(\pi, 2 \pi)$ (iii): consider the function, $f(x)=\sin x(1+\cos x), 0 $\Rightarrow f^{\prime}(x)=\cos x+\sin x(-\sin x)+\cos x(\cos x)$ $\Rightarrow f^{\prime}(x)=\cos x-\sin ^{2} x+\cos ^{2} x$ $\Rightarrow f^{\prime}(x)=\cos x+\left(\cos ^{2} x-1\right)+\cos ^{2} x$ $\Rightarrow f^{\prime}(x)=\cos x+2 \cos ^{2} x-1$ $\Rightarrow f^{\prime}(x)=(2 \cos x-1)(\cos x+1)$ for $f(x)$ to be increasing, we must have, $f^{\prime}(x)>0$ $\left.\Rightarrow f^{\prime}(x)\right)=(2 \cos x-1)(\cos x+1)$ $\Rightarrow 0 So, $f(x)$ to be decreasing, we must have, $f^{\prime}(x)<0$ $\left.\Rightarrow f^{\prime}(x)\right)=(2 \cos x-1)(\cos x+1)$ $\Rightarrow \frac{\pi}{3} $\Rightarrow x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ So, $f(x)$ is decreasing in $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$