Find the intervals in which $f(x)=\sin x-\cos x$, where $0
Given:- Function $f(x)=\sin x-\cos x, 0 Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$. (i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$ (ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$ Algorithm:- (i) Obtain the function and put it equal to $f(x)$ (ii) Find $f^{\prime}(x)$ (iii) Put $f^{\prime}(x)>0$ and solve this inequation. For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have, $f(x)=\sin x-\cos x$ $\Rightarrow f^{\prime}(x)=\frac{d}{d x}(\sin x-\cos x)$ $\Rightarrow f^{\prime}(x)=\cos x+\sin x$ For $f(x)$ lets find critical point, we must have $\Rightarrow f^{\prime}(x)=0$ $\Rightarrow \cos x+\sin x=0$ $\Rightarrow \tan (x)=-1$ $\Rightarrow x=\frac{3 \pi}{4}, \frac{7 \pi}{4}$ clearly, $f^{\prime}(x)>0$ if $0 and $f^{\prime}(x)<0$ if $\frac{3 \pi}{4} Thus, $f(x)$ increases on $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$ and $f(x)$ is decreasing on interval $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$