Question:
Find the interval in which $f(x)=\log (1+x)-\frac{x}{1+x}$ is increasing or decreasing ?
Solution:
we have
$f(x)=\log (1+x)-\frac{x}{1+x}$
$f^{\prime}(x)=\frac{1}{1+x}-\left(\frac{(1+x)-x}{(1+x)^{2}}\right)$
$=\frac{1}{1+x}-\left(\frac{1}{(1+x)^{2}}\right)$
$=\frac{x}{(1+x)^{2}}$
Critical points
$\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow \frac{x}{(1+x)^{2}}=0$
$\Rightarrow x=0,-1$
Clearly, $f^{\prime}(x)>0$ if $x>0$
And $f^{\prime}(x)<0$ if $-1 Hence, $f(x)$ increases in $(0, \infty)$, decreases in $(-\infty,-1) \cup(-1,0)$