Question:
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) −8 and −2
Solution:
(i) Let the G.M. between 2 and 8 be $G$.
Then, $2, G$ and 8 are in G.P.
$\therefore G^{2}=2 \times 8$
$\Rightarrow G^{2}=16$
$\Rightarrow G=\pm \sqrt{16}$
$\Rightarrow G=\pm 4$
(ii) Let the G.M. between $a^{3} b$ and $a b^{3}$ be $G .$
Then, $a^{3} b, G$ and $a b^{3}$ are in G.P.
$\therefore G^{2}=a^{3} b \times a b^{3}$
$\Rightarrow G^{2}=a^{4} b^{4}$
$\Rightarrow G=\sqrt{a^{4} b^{4}}$
$\Rightarrow G=a^{2} b^{2}$
(iii) Let the G.M. between $-8$ and $-2$ be $G$.
Then, $-8, G$ and $-2$ are in G.P.
$\therefore G^{2}=(-8)(-2)$
$\Rightarrow G^{2}=16$
$\Rightarrow G=\pm \sqrt{16}$
$\Rightarrow G=4,-4$