Find the general solution of the equation

Question:

 Find the general solution of the equation (√3 – 1) cos θ + (√3 + 1) sin θ = 2

[Hint: Put √3 – 1 = r sin α, √3 + 1 = r cos α which gives tan α = tan((π/4) – (π/6)) α = π/12]

Solution:

Let, r sinα = √3 – 1 and r cosα = √3 + 1

Therefore, r = √{(√3 – 1)2 + (√3 + 1)2} = √8 = 2√2

And, tan α = (√3 – 1) / (√3 + 1)

Therefore, r(sinα cos θ + cosα sin θ) = 2

⇒ r sin (θ+α) = 2

⇒ sin (θ+α) = 1/√2

⇒ sin (θ+α) = sin (π/4)

⇒ θ+α = nπ + (– 1)n (π/4), n ∈ Z

⇒ θ = nπ + (– 1)n (π/4) – (π/12), n ∈ Z

Leave a comment