Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Question:
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Solution:
Let the four numbers be $a-3 d, a-d, a+d, a+3 d$.
Sum $=50$
$\Rightarrow a-3 d+a-d+a+d+a+3 d=50$
$\Rightarrow 4 a=50$
$\Rightarrow a=\frac{25}{2} \ldots(i)$
Also, $a+3 d=4(a-3 d)$
$\Rightarrow a+3 d=4 a-12 d$
$\Rightarrow 3 a=15 d$
$\Rightarrow a=5 d$
$\Rightarrow \frac{25}{2 \times 5}=d \quad(\operatorname{Using}(\mathrm{i}))$
$\Rightarrow \frac{5}{2}=d$
So, the terms are as follows:
$\left(\frac{25}{2}-3 \times \frac{5}{2}\right),\left(\frac{25}{2}-\frac{5}{2}\right),\left(\frac{25}{2}+\frac{5}{2}\right),\left(\frac{25}{2}+3 \times \frac{5}{2}\right)$
$=5,10,15,20$