Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Here, we are given that four number are in A.P., such that there sum is 50 and the greatest number is 4 times the smallest.
So, let us take the four terms as $a-d, a, a+d, a+2 d$.
Now, we are given that sum of these numbers is 50, so we get,
$(a-d)+(a)+(a+d)+(a+2 d)=50$
$a-d+a+a+d+a+2 d=50$
$4 a+2 d=50$
$2 a+d=25 \ldots \ldots$ (1)
Also, the greatest number is 4 times the smallest, so we get,
$a+2 d=4(a-d)$
$a+2 d=4 a-4 d$
$4 d+2 d=4 a-a$
$6 d=3 a$
$d=\frac{3}{6} a$...........(2)
Now, using (2) in (1), we get,
$2 a+\frac{3}{6} a=25$
$\frac{12 a+3 a}{6}=25$
$15 a=150$
$a=\frac{150}{15}$
$a=10$
Now, using the value of a in (2), we get
$d=\frac{3}{6}(10)$
$d=\frac{10}{2}$
$d=5$
So, first term is given by,
$a-d=10-5$
$=5$
Second term is given by,
$a=10$
Third term is given by,
$a+d=10+5$
$=15$
Fourth term is given by,
$a+2 d=10+(2)(5)$
$=10+10$
$=20$
Therefore, the four terms are $5,10,15,20$.