Find the following product and verify the result for x = − 1, y = − 2:
$\left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)$
To multiply, we will use distributive law as follows:
$\left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)$
$=\left[\frac{1}{3} x\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)\right]-\left[\frac{y^{2}}{5}\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)\right]$
$=\left[\frac{1}{9} x^{2}+\frac{x y^{2}}{15}\right]-\left[\frac{x y^{2}}{15}+\frac{y^{4}}{25}\right]$
$=\frac{1}{9} x^{2}+\frac{x y^{2}}{15}-\frac{x y^{2}}{15}-\frac{y^{4}}{25}$
$=\frac{1}{9} x^{2}-\frac{y^{4}}{25}$
$\therefore\left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)=\frac{1}{9} x^{2}-\frac{y^{4}}{25}$
Now, we will put $x=-1$ and $y=-2$ on both the sides to verify the result.
$\mathrm{LHS}=\left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right)$
$=\left[\frac{1}{3}(-1)-\frac{(-2)^{2}}{5}\right]\left[\frac{1}{3}(-1)+\frac{(-2)^{2}}{5}\right]$
$=\left(-\frac{1}{3}-\frac{4}{5}\right)\left(-\frac{1}{3}+\frac{4}{5}\right)$
$=\left(\frac{-17}{15}\right)\left(\frac{7}{15}\right)$
$=\frac{-119}{225}$
$\mathrm{RHS}=\frac{1}{9} x^{2}-\frac{y^{4}}{25}$
$=\frac{1}{9}(-1)^{2}-\frac{(-2)^{4}}{25}$
$=\frac{1}{9} \times 1-\frac{16}{25}$
$=\frac{1}{9}-\frac{16}{25}$
$=-\frac{119}{225}$
Because LHS is equal to RHS, the result is verified.
Thus, the answer is $\frac{1}{9} x^{2}-\frac{y^{4}}{25}$.