Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
To multiply, we will use distributive law as follows:
$\left(x^{2} y-1\right)\left(3-2 x^{2} y\right)$
$=x^{2} y\left(3-2 x^{2} y\right)-1 \times\left(3-2 x^{2} y\right)$
$=3 x^{2} y-2 x^{4} y^{2}-3+2 x^{2} y$
$=5 x^{2} y-2 x^{4} y^{2}-3$
$\therefore\left(x^{2} y-1\right)\left(3-2 x^{2} y\right)=5 x^{2} y-2 x^{4} y^{2}-3$
Now, we put $x=-1$ and $y=-2$ on both sides to verify the result.
$\operatorname{LHS}=\left(x^{2} y-1\right)\left(3-2 x^{2} y\right)$
$=\left[(-1)^{2}(-2)-1\right]\left[3-2(-1)^{2}(-2)\right]$
$=[1 \times(-2)-1][3-2 \times 1 \times(-2)]$
$=(-2-1)(3+4)$
$=-3 \times 7$
$=-21$
$\mathrm{RHS}=5 x^{2} y-2 x^{4} y^{2}-3$
$=5(-1)^{2}(-2)-2(-1)^{4}(-2)^{2}-3$
$=[5 \times 1 \times(-2)]-[2 \times 1 \times 4]-3$
$=-10-8-3$
$=-21$
Because LHS is equal to RHS, the result is verified.
Thus, the answer is $5 x^{2} y-2 x^{4} y^{2}-3$.