Find the equations of the tanqent and normal to the parabola $y^{2}=4 a x$ at the point ( $a t^{2}, 2 a t$ ).
The equation of the given parabola is $y^{2}=4 a x$.
On differentiating $y^{2}=4 a x$ with respect to $x$, we have:
$2 y \frac{d y}{d x}=4 a$
$\Rightarrow \frac{d y}{d x}=\frac{2 a}{y}$
$\therefore$ The slope of the tangent at $\left(a t^{2}, 2 a t\right)$ is $\left.\frac{d y}{d x}\right]_{\left(a t^{2}, 2 a t\right)}=\frac{2 a}{2 a t}=\frac{1}{t}$.
Then, the equation of the tangent at $\left(a t^{2}, 2 a t\right)$ is given by,
$y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\Rightarrow t y-2 a t^{2}=x-a t^{2}$
$\Rightarrow t y=x+a t^{2}$
Now, the slope of the normal at $\left(a t^{2}, 2 a t\right)$ is given by,
Thus, the equation of the normal at (at2, 2at) is given as:
$y-2 a t=-t\left(x-a t^{2}\right)$
$\Rightarrow y-2 a t=-t x+a t^{3}$
$\Rightarrow y=-t x+2 a t+a t^{3}$