Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.
Let the coordinates of P be (x, y, z).
The coordinates of points A and B are (4, 0, 0) and (–4, 0, 0) respectively.
It is given that PA + PB = 10.
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10$
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}$
On squaring both sides, we obtain
$\Rightarrow(x-4)^{2}+y^{2}+z^{2}=100-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}+(x+4)^{2}+y^{2}+z^{2}}$
$\Rightarrow x^{2}-8 x+16+y^{2}+z^{2}=100-20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}+x^{2}+8 x+16+y^{2}+z^{2}$
$\Rightarrow 20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=100+16 x$
$\Rightarrow 5 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=(25+4 x)$
On squaring both sides again, we obtain
$25\left(x^{2}+8 x+16+y^{2}+z^{2}\right)=625+16 x^{2}+200 x$
$\Rightarrow 25 x^{2}+200 x+400+25 y^{2}+25 z^{2}=625+16 x^{2}+200 x$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2}-225=0$
Thus, the required equation is $9 x^{2}+25 y^{2}+25 z^{2}-225=0$.