Question:
Find the equation of the normal to $y=2 x^{3}-x^{2}+3$ at $(1,4)$.
Solution:
$y=2 x^{3}-x^{2}+3$
Differentiating both sides w.r.t. $x$,
$\frac{d y}{d x}=6 x^{2}-2 x$
Slope of tangent $=\left(\frac{d y}{d x}\right)_{(1,4)}=6(1)^{2}-2(1)=4$
Slope of normal $=\frac{-1}{\text { Slope of tangent }}=\frac{-1}{4}$
Given $\left(x_{1}, y_{1}\right)=(1,4)$
Equation of normal is,
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=\frac{-1}{4}(x-1)$
$\Rightarrow 4 y-16=-x+1$
$\Rightarrow x+4 y=17$