Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
The equation of line in intercept form is
$\frac{x}{a}+\frac{y}{b}=1$
Where $\mathrm{a}$ and $\mathrm{b}$ are the intercepts on the axis. Given that $\mathrm{a}+\mathrm{b}=14$
The above equation can be written as
$\Rightarrow \mathrm{b}=14-\mathrm{a}$
Substituting the value of $a$ and $b$ in equation 1 we get So, equation of line is
$\frac{x}{a}+\frac{y}{14-a}=1$
Taking LCM
$\Rightarrow \frac{x(14-a)+a y}{(a)(14-a)}=1$
$\Rightarrow 14 x-a x+a y=14 a-a^{2} \ldots \ldots 2$
$\Rightarrow \frac{x(14-a)+a y}{(a)(14-a)}=1$
$\Rightarrow 14 x-a x+a y=14 a-a^{2} \ldots \ldots .2$
$\Rightarrow \frac{x(14-a)+a y}{(a)(14-a)}=1$
$\Rightarrow 14 x-a x+a y=14 a-a^{2} \ldots \ldots 2$
If equation 2 passes through the point $(3,4)$ then
$14(3)-a(3)+a 4)=14 a-a^{2}$
$\Rightarrow 42-3 a+4 a-14 a+a^{2}=0$
$\Rightarrow a^{2}-13 a+42=0$
$\Rightarrow a^{2}-7 a-6 a+42=0$
$\Rightarrow a(a-7)-6(a-7)=0$
$\Rightarrow(a-6)(a-7)=0$
$\Rightarrow a-6=0$ or $a-7=0$
$\Rightarrow a=6$ or $a=7$
If $a=6$, then
$\Rightarrow b=14-6=8$
If $a=7$, then
$7+b=14$
$\Rightarrow b=14-7$
$=7$
If $a=6$ and $b=8$, then equation of line is
$\frac{x}{6}+\frac{y}{8}=1$
$\Rightarrow \frac{4 x+3 y}{24}=1$
$\Rightarrow 4 x+3 y=24$
If $a=7$ and $b=7$, then equation of line is
$\frac{x}{7}+\frac{y}{7}=1$
$\Rightarrow x+y=7$