Find the equation of the line for which

Question:

Find the equation of the line for which

$p=8$ and $\alpha=1500$

 

Solution:

Given: $p=8$ and $\alpha=1500$

Here $p$ is the perpendicular that makes an angle $\propto$ with positive direction of $x$-axis, hence the equation of the straight line is given by:

Formula used:

$x \cos \propto+y \sin \alpha=p$

$x \cos 1500+y \sin 1500=8$

i.e; $\cos 1500=\cos ((4 \times 360)+60)=\cos ((4 \times 2 \pi)+60)=\cos 60$ similarly, $\sin 1500=\sin ((4 \times 360)+60)=\sin ((4 \times 2 \pi)+60)=\sin 60$ $x \times(1 / 2)+y \times(\sqrt{3} / 2)=8$

Hence The Required equation of the line is $x+\sqrt{3} y=16$.

 

Leave a comment