Find the equation of the hyperbola whose foci are $(\pm \sqrt{29}, 0)$ and the transverse axis is of the length 10 .
Given: Foci are $(\pm \sqrt{29}, 0)$, the transverse axis is of the length 10
Need to find: The equation of the hyperbola.
Let, the equation of the hyperbola be:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
The transverse axis is of the length 10, i.e., $2 \mathrm{a}=10$
Therefore, $a=5$
The foci are given at $(\pm \sqrt{29}, 0)$
That means, ae $=\pm \sqrt{29}$, where e is the eccentricity.
$\Rightarrow 5 \mathrm{e}=\sqrt{29}[$ As $\mathrm{a}=5]$
$\Rightarrow \quad e=\frac{\sqrt{29}}{5}$
We know that,
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
Therefore,
$\Rightarrow \sqrt{1+\frac{b^{2}}{a^{2}}}=\frac{\sqrt{29}}{5}$
$\Rightarrow 1+\frac{b^{2}}{a^{2}}=\frac{29}{25}$ [Squaring both sides]
$\Rightarrow \frac{b^{2}}{a^{2}}=\frac{29}{25}-1=\frac{4}{25}$
$\Rightarrow \mathrm{b}^{2}=\mathrm{a}^{2} \frac{4}{25}$
$\Rightarrow \mathrm{b}^{2}=25 \times \frac{4}{25}=4[$ As $\mathrm{a}=5]$
So, the equation of the hyperbola is,
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{25}-\frac{y^{2}}{4}=1$ [Answer]