Find the equation of the hyperbola whose foci are $(\pm 3 \sqrt{5}, 0)$ and the length of the latus rectum is 8 units.
Given: Foci are $(\pm 3 \sqrt{5}, 0)$ the length of the latus rectum is 8 units
Need to find: The equation of the hyperbola.
Let, the equation of the hyperbola be:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
The length of the latus rectum is 8 units.
Therefore, $\frac{2 b^{2}}{a}=8 \Rightarrow b^{2}=4 a \cdots$ (1)
The foci are given at $(\pm 3 \sqrt{5}, 0)$
That means, ae $=3 \sqrt{5}$, where e is the eccentricity.
We know that
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
Therefore
$\Rightarrow \sqrt{1+\frac{b^{2}}{a^{2}}}=3 \sqrt{5}$
$\Rightarrow \quad \frac{\sqrt{a^{2}+b^{2}}}{a}=3 \sqrt{5}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=45$ [Squaring both sides]
$\Rightarrow \mathrm{a}^{2}+4 \mathrm{a}=45[$ From $(1)]$
$\Rightarrow \mathrm{a}^{2}+4 \mathrm{a}-45=0$
$\Rightarrow \mathrm{a}^{2}+9 \mathrm{a}-5 \mathrm{a}-45=0$
$\Rightarrow(\mathrm{a}+9)(\mathrm{a}-5)=0$
So, either $a=5$ or, $a=-9$
That means, either $b=2 \sqrt{5}$ or, $b=\sqrt{-36}$
The value of $b=\sqrt{-36}$ is not a valid one. So, the $b$ value and its corresponding $a$ value is not acceptable.
Hence, the acceptable value of a is 5 and b is
$2 \sqrt{5}$
So, the equation of the hyperbola is
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{25}-\frac{y^{2}}{20}=1$ [Answer]