Find the equation of the hyperbola whose foci are (±5, 0) and the conjugate axis is of the length 8. Also, find its eccentricity.
Given: Foci are (±5, 0), the conjugate axis is of the length 8
Need to find: The equation of the hyperbola and eccentricity.
Let, the equation of the hyperbola be:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
The conjugate axis is of the length 8, i.e., $2 b=8$
Therefore, $b=4$
The foci are given at $(\pm 5,0)$
That means, $\mathrm{ae}=5$, where $\mathrm{e}$ is the eccentricity.
We know that,
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
Therefore,
$\Rightarrow \sqrt[a]{1+\frac{b^{2}}{a^{2}}}=5$
$\Rightarrow \sqrt{1+\frac{b^{2}}{a^{2}}}=\frac{5}{a}$
$\Rightarrow 1+\frac{b^{2}}{a^{2}}=\frac{25}{a^{2}}$ [Squaring both sides]
$\Rightarrow \frac{b^{2}}{a^{2}}=\frac{25}{a^{2}}-1=\frac{25-a^{2}}{a^{2}}$
$\Rightarrow b^{2}=25-a^{2}$
$\Rightarrow a^{2}=25-b^{2}=25-16=9$
So, the equation of the hyperbola is,
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
Eccentricity, $\mathrm{e}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{1+\frac{16}{9}}=\sqrt{\frac{25}{9}}=\frac{5}{3}[$ Answer $]$