Find the equation of the ellipse whose foci are at (±1, 0) and $e=\frac{1}{2}$
Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Given:
Coordinates of foci $=(\pm 1,0) \ldots(\mathrm{i})$
We know that,
Coordinates of foci $=(\pm c, 0) \ldots$ (ii)
$\therefore$ From eq. (i) and (ii), we get
c = 1
It is also given that
Eccentricity $=\frac{1}{2}$
we know that,
Eccentricity, $e=\frac{c}{a}$
$\Rightarrow \frac{1}{2}=\frac{1}{a}[\because c=1]$
$\Rightarrow a=2$
Now, we know that,
$c^{2}=a^{2}-b^{2}$
$\Rightarrow(1)^{2}=(2)^{2}-b^{2}$
$\Rightarrow 1=4-b^{2}$
$\Rightarrow b^{2}=4-1$
$\Rightarrow b^{2}=3$
Substituting the value of $a^{2}$ and $b^{2}$ in the equation of an ellipse, we get
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$