Find the equation of the ellipse whose foci are (±2, 0) and the eccentricity is $\frac{1}{2}$
Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Given:
Coordinates of foci $=(\pm 2,0)$...(iii)
We know that,
Coordinates of foci $=(\pm c, 0)$...(iv)
$\therefore$ From eq. (iii) and (iv), we get
$c=2$
It is also given that
Eccentricity $=\frac{1}{2}$
we know that,
Eccentricity, e $=\frac{c}{a}$
$\Rightarrow \frac{1}{2}=\frac{2}{a}[\because c=2]$
$\Rightarrow a=4$
Now, we know that,
$c^{2}=a^{2}-b^{2}$
$\Rightarrow(2)^{2}=(4)^{2}-b^{2}$
$\Rightarrow 4=16-b^{2}$
$\Rightarrow b^{2}=16-4$
$\Rightarrow b^{2}=12$
Substituting the value of $a^{2}$ and $b^{2}$ in the equation of an ellipse, we get
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{12}=1$