Find the equation of the ellipse which passes through the point (4, 1) and having its foci at (±3, 0).
Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ …(i)
Given:
Coordinates of foci $=(\pm 3,0)$...(ii)
We know that,
Coordinates of foci $=(\pm C, 0)$...(iii)
$\therefore$ From eq. (ii) and (iii), we get
c = 3
We know that,
$c^{2}=a^{2}-b^{2}$
$\Rightarrow(3)^{2}=a^{2}-b^{2}$
$\Rightarrow 9=a^{2}-b^{2}$
$\Rightarrow b^{2}=a^{2}-9 \ldots$ (iv)
Given that ellipse passing through the points $(4,1)$
So, point $(4,1)$ will satisfy the eq. (i)
Taking point $(4,1)$ where $x=4$ and $y=1$
Putting the values in eq. (i), we get
$\frac{(4)^{2}}{a^{2}}+\frac{(1)^{2}}{b^{2}}=1$
$\Rightarrow \frac{16}{a^{2}}+\frac{1}{b^{2}}=1$
$\Rightarrow \frac{16}{a^{2}}+\frac{1}{a^{2}-9}=1[$ from (iv) $]$
$\Rightarrow \frac{16\left(a^{2}-9\right)+a^{2}}{\left(a^{2}\right)\left(a^{2}-9\right)}=1$
$\Rightarrow 16 a^{2}-144+a^{2}=a^{2}\left(a^{2}-9\right)$
$\Rightarrow 17 a^{2}-144=a^{4}-9 a^{2}$
$\Rightarrow a^{4}-9 a^{2}-17 a^{2}+144=0$
$\Rightarrow a^{4}-26 a^{2}+144=0$
$\Rightarrow a^{4}-8 a^{2}-18 a^{2}+144=0$
$\Rightarrow a^{2}\left(a^{2}-8\right)-18\left(a^{2}-8\right)=0$
$\Rightarrow\left(a^{2}-8\right)\left(a^{2}-18\right)=0$
$\Rightarrow a^{2}-8=0$ or $a^{2}-18=0$
$\Rightarrow a^{2}=8$ or $a^{2}=18$
If $a^{2}=8$ then
$b^{2}=8-9$
$=-1$
Since the square of a real number cannot be negative. So, this is not possible
If $a^{2}=18$ then
$b^{2}=18-9$
= 9
So, equation of ellipse if $a^{2}=18$ and $b^{2}=9$
$\frac{x^{2}}{18}+\frac{y^{2}}{9}=1$