Find the equation of the circle passing through (0, 0) and making intercepts a and b on the coordinate axes.
Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the circle passes through $(0,0)$,
$(0-h)^{2}+(0-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}=r^{2}$
The equation of the circle now becomes $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$.
It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes through points (a, 0) and (0, b). Therefore,
$(a-h)^{2}+(0-k)^{2}=h^{2}+k^{2}$ $. .(1)$
$(0-h)^{2}+(b-k)^{2}=h^{2}+k^{2}$ (2)
From equation (1), we obtain
$a^{2}-2 a h+h^{2}+k^{2}=h^{2}+k^{2}$
$\Rightarrow a^{2}-2 a h=0$
$\Rightarrow a(a-2 h)=0$
$\Rightarrow a=0$ or $(a-2 h)=0$
However, $a \neq 0$; hence, $(a-2 h)=0 \Rightarrow h=\frac{a}{2}$.
From equation (2), we obtain
$h^{2}+b^{2}-2 b k+k^{2}=h^{2}+k^{2}$
$\Rightarrow b^{2}-2 b k=0$
$\Rightarrow b(b-2 k)=0$
$\Rightarrow b=0$ or $(b-2 k)=0$
However, $b \neq 0$; hence, $(b-2 k)=0 \Rightarrow k=\frac{b}{2}$
Thus, the equation of the required circle is
$\left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}$
$\Rightarrow\left(\frac{2 x-a}{2}\right)^{2}+\left(\frac{2 y-b}{2}\right)^{2}=\frac{a^{2}+b^{2}}{4}$
$\Rightarrow 4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2}$
$\Rightarrow 4 x^{2}+4 y^{2}-4 a x-4 b y=0$
$\Rightarrow x^{2}+y^{2}-a x-b y=0$