Find the equation

Question:

Find the equation of the tangent and the normal to the following curves at the indicated points:

$x^{2}=4 y$ at $(2,1)$

Solution:

finding the slope of the tangent by differentiating the curve

$2 \mathrm{x}=4 \frac{\mathrm{dy}}{\mathrm{dx}}$

$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}}{2}$

$\mathrm{m}($ tangent $)$ at $(2,1)=1$

normal is perpendicular to tangent so, $m_{1} m_{2}=-1$

$\mathrm{m}($ normal) at $(2,1)=-1$

equation of tangent is given by $y-y_{1}=m(\operatorname{tangent})\left(x-x_{1}\right)$

$y-1=1(x-2)$

equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$

$y-1=-1(x-2)$

Leave a comment