Find the eccentricity of an ellipse whose latus rectum is one half of its minor axis.
Let the equation of the required ellipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ............(i)
It is given that
Length of Latus Rectum $=\frac{1}{2}$ minor Axis
We know that,
Length of Latus Rectum $=\frac{2 b^{2}}{a}$
and Length of Minor Axis = 2b
So, according to the given condition,
$\frac{2 b^{2}}{a}=\frac{1}{2} \times 2 b$
$\Rightarrow \frac{2 b^{2}}{a}=b$
$\Rightarrow \frac{2 \mathrm{~b}^{2}}{\mathrm{~b}}=\mathrm{a}$
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}$ …(ii)
Now, we have to find the eccentricity
We know that
Eccentricity, $\mathrm{e}=\frac{\mathrm{c}}{\mathrm{a}}$ …(iii)
where, $c^{2}=a^{2}-b^{2}$
So, $c^{2}=(2 b)^{2}-b^{2}[$ from (ii) $]$
$\Rightarrow c^{2}=4 b^{2}-b^{2}$
$\Rightarrow c^{2}=3 b^{2}$
$\Rightarrow c=\sqrt{3} b^{2}$
$\Rightarrow c=b \sqrt{3}$
Substituting the value of c and a in eq. (iii), we get
Eccentricity, $e=\frac{c}{a}$
$=\frac{b \sqrt{3}}{2 b}$
$\therefore \mathrm{e}=\frac{\sqrt{3}}{2}$