Find the domain of each of the following real valued functions of real variable:
(i) $f(x)=\frac{1}{x}$
(ii) $f(x)=\frac{1}{x-7}$
(iii) $f(x)=\frac{3 x-2}{x+1}$
(iv) $f(x)=\frac{2 x+1}{x^{2}-9}$
(v) $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
(i) Given: $f(x)=\frac{1}{x}$
Domain of f :
We observe that f (x) is defined for all x except at x = 0.
At $x=0, f(x)$ takes the intermediate form $\frac{1}{0}$.
Hence, domain ( f ) = R
(ii) Given: $f(x)=\frac{1}{(x-7)}$
Domain of f :
Clearly, f (x) is not defined for all (x
At $x=7, f(x)$ takes the intermediate form $\frac{1}{0}$.
Hence, domain ( f ) = R
(iii) Given: $f(x)=\frac{3 x-2}{(x+1)}$
Domain of f :
Clearly, $f(x)$ is not defined for all $(x+1)=0$, i.e. $x=-1$.
At $x=-1, f(x)$ takes the intermediate form $\frac{1}{0}$.
Hence, domain $(f)=R-\{-1\}$.
(iv) Given: $f(x)=\frac{2 x+1}{x^{2}-9}$
Domain of $f$ :
Clearly, $f(x)$ is defined for all $x \in R$ except for $x^{2}-9 \neq 0$, i.e. $x=\pm 3$.
At $x=-3,3, f(x)$ takes the intermediate form $\frac{1}{0}$.
Hence, domain $(f)=R-\{-3,3\}$.
(v) Given: $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
$=\frac{x^{2}+2 x+1}{x^{2}-6 x-2 x+12}$
$=\frac{x^{2}+2 x+1}{x(x-6)-2(x-6)}$
$=\frac{x^{2}+2 x+1}{(x-6)(x-2)}$
Domain of $f$ : Clearly, $f(x)$ is a rational function of $x$ as $\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$ is a rational expression.
Clearly, $f(x)$ assumes real values for all $x$ except for all those values of $x$ for which $x^{2}-8 x+12=0$, i.e. $x=2,6$.
Hence, domain $(f)=R-\{2,6\}$.