Find the domain of each of the following real function.
(i) $f(x)=\frac{3 x+5}{x^{2}-9}$
(ii) $f(x)=\frac{2 x-3}{x^{2}+x-2}$
(iii) $f(x)=\frac{x^{2}-2 x+1}{x^{2}-8 x+12}$
(iv) $f(x)=\frac{x^{3}-8}{x^{2}-1}$
(i) Given: $f(x)=\frac{3 x+5}{x^{2}-9}$
Need to find: Where the functions are defined.
To find the domain of the function f(x) we need to equate the denominator to 0.
Therefore,
$x^{2}-9=0$
$\Rightarrow x^{2}=9$
$\Rightarrow^{x=\pm 3}$
It means that the denominator is zero when $x=3$ and $x=-3$
So, the domain of the function is the set of all the real numbers except $+3$ and $-3$.
The domain of the function, $\mathrm{D} \mathrm{f}(\mathrm{x})=(-\infty,-3) \cup(-3,3) \cup(3, \infty)$.
(ii) Given: $f(x)=\frac{2 x-3}{x^{2}+x-2}$
Need to find: Where the functions are defined.
To find the domain of the function f(x) we need to equate the denominator to 0.
Therefore
$x^{2}+x-2=0$
$\Rightarrow^{x^{2}+2 x-x-2}=0$
$\Rightarrow x(x+2)-1(x+2)=0$
$\Rightarrow(x+2)(x-1)=0$
$\Rightarrow^{x=-2} \& x=1$
It means that the denominator is zero when $x=1$ and $x=-2$
So, the domain of the function is the set of all the real numbers except 1 and $-2$.
The domain of the function, $D_{f(x)}=(-\infty,-2) \cup(-2,1) \cup(1, \infty)$.
(iii) Given: $f(x)=\frac{x^{2}-2 x+1}{x^{2}-8 x+12}$
Need to find: Where the functions are defined.
To find the domain of the function f(x) we need to equate the denominator to 0.
Therefore,
$x^{2}-8 x+12=0$
$\Rightarrow x^{2}-2 x-6 x+12=0$
$\Rightarrow x(x-2)-6(x-2)=0$
$\Rightarrow(x-2)(x-6)=0$
$\Rightarrow^{x=2} \&^{x=6}$
It means that the denominator is zero when x = 2 and x = 6
So, the domain of the function is the set of all the real numbers except 2 and 6 .
The domain of the function, $\mathrm{D}^{\mathrm{t}(x)}=(-\infty, 2) \cup(2,6) \cup(6, \infty)$.
(iv) Given: $f(x)=\frac{x^{3}-8}{x^{2}-1}$
Need to find: Where the functions are defined.
To find the domain of the function f(x) we need to equate the denominator to 0.
Therefore
$x^{2}-1=0$
$\Rightarrow x^{2}=1$
$\Rightarrow x=\pm 1$
It means that the denominator is zero when $x=-1$ and $x=1$
So, the domain of the function is the set of all the real numbers except $-1$ and $+1$.
The domain of the function, $D_{f(x)}=(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.