Find the distance between the following pairs of points:
(i) (2, 3, 5) and (4, 3, 1)
(ii) (–3, 7, 2) and (2, 4, –1)
(iii) (–1, 3, –4) and (1, –3, 4)
(iv) (2, –1, 3) and (–2, 1, 3)
The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{P}\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
(i) Distance between points (2, 3, 5) and (4, 3, 1)
$=\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}}$
$=\sqrt{(2)^{2}+(0)^{2}+(-4)^{2}}$
$=\sqrt{4+16}$
$=\sqrt{20}$
$=2 \sqrt{5}$
(ii) Distance between points (–3, 7, 2) and (2, 4, –1)
$=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{(5)^{2}+(-3)^{2}+(-3)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) Distance between points $(-1,3,-4)$ and $(1,-3,4)$
$=\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}}$
$=\sqrt{(2)^{2}+(-6)^{3}+(8)^{2}}$
$=\sqrt{4+36+64}=\sqrt{104}=2 \sqrt{26}$
(iv) Distance between points $(2,-1,3)$ and $(-2,1,3)$
$=\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}}$
$=\sqrt{(-4)^{2}+(2)^{2}+(0)^{2}}$
$=\sqrt{(-4)}+(2)$
$=\sqrt{16+4}$
$=\sqrt{20}$
$=2 \sqrt{5}$