Question.
Find the distance between the following pairs of points :
(a) (2,3), (4, 1)
(b) (–5, 7), (–1,3)
(c) (a, b), (– a, – b)
Find the distance between the following pairs of points :
(a) (2,3), (4, 1)
(b) (–5, 7), (–1,3)
(c) (a, b), (– a, – b)
Solution:
(a) The given points are : A (2, 3), B (4, 1).
Required distance $=\mathrm{AB}=\mathrm{BA}=\sqrt{\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2}}$
$A B=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(b) Here $x_{1}=-5, y_{1}=7$ and $x_{2}=-1, y_{2}=3$
$\therefore$ The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\mathbf{I}-\mathbf{1}-\mathbf{( - 5 )}^{\mathbf{2}}+\mathbf{( 3}-\mathbf{7 )}^{2}}$
$=\sqrt{(-1+5)^{2}+(-4)^{2}}$
$=\sqrt{16+16}=\sqrt{32}=\sqrt{2 \times 16}$
$=4 \sqrt{2}$ units
(c) Here $x_{1}=a, y_{1}=b$ and $x_{2}=-a, y_{2}=-b$
$\therefore$ The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-\mathbf{a}-\mathbf{a})^{2}+(-\mathbf{b}-\mathbf{b})^{2}}$
$=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}$
$=\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{\left(a^{2}+b^{2}\right)}$ units
(a) The given points are : A (2, 3), B (4, 1).
Required distance $=\mathrm{AB}=\mathrm{BA}=\sqrt{\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2}}$
$A B=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(b) Here $x_{1}=-5, y_{1}=7$ and $x_{2}=-1, y_{2}=3$
$\therefore$ The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\mathbf{I}-\mathbf{1}-\mathbf{( - 5 )}^{\mathbf{2}}+\mathbf{( 3}-\mathbf{7 )}^{2}}$
$=\sqrt{(-1+5)^{2}+(-4)^{2}}$
$=\sqrt{16+16}=\sqrt{32}=\sqrt{2 \times 16}$
$=4 \sqrt{2}$ units
(c) Here $x_{1}=a, y_{1}=b$ and $x_{2}=-a, y_{2}=-b$
$\therefore$ The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-\mathbf{a}-\mathbf{a})^{2}+(-\mathbf{b}-\mathbf{b})^{2}}$
$=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}$
$=\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{\left(a^{2}+b^{2}\right)}$ units