Find the discriminant of each of the following equations:
(i) $2 x^{2}-7 x+6=0$
(ii) $3 x^{2}-2 x+8=0$
(iii) $2 x^{2}-5 \sqrt{2} x+4=0$
(iv) $\sqrt{3} x^{2}+2 \sqrt{2} x-2 \sqrt{3}=0$
(v) $(x-1)(2 x-1)=0$
(vi) $1-x=2 x^{2}$
(i) $2 x^{2}-7 x+6=0$
Here,
$a=2$
$b=-7$
$c=6$
Discriminant $D$ is diven by :
$D=b^{2}-4 a c$
$=(-7)^{2}-4 \times 2 \times 6$
$=49-48$
$=1$
(ii) $3 x^{2}-2 x+8=0$
Here,
$a=3$,
$b=-2$,
$c=8$
Discriminant $D$ is given by :
$D=b^{2}-4 a c$
$=(-2)^{2}-4 \times 3 \times 8$
$=4-96$
$=-92$
(iii) $2 x^{2}-5 \sqrt{2 x}+4=0$
Here,
$a=2$
$b=-5 \sqrt{2}$
$c=4$
Discriminant $D$ is given by:
$D=b^{2}-4 a c$
$=(-5 \sqrt{2})^{2}-4 \times 2 \times 4$
$=(25 \times 2)-32$
$=50-32$
$=18$
(iv) $\sqrt{3} x^{2}+2 \sqrt{2} x-2 \sqrt{3}=0$
Here,
$a=\sqrt{3}$
$b=2 \sqrt{2}$
$c=-2 \sqrt{3}$
Discriminant $D$ is given by:
$D=b^{2}-4 a c$
$=(2 \sqrt{2})^{2}-4 \times \sqrt{3} \times(-2 \sqrt{3})$
$=(4 \times 2)+(8 \times 3)$
$=8+24$
$=32$
(v) $(x-1)(2 x-1)=0$
$\Rightarrow 2 x^{2}-3 x+1=0$
Comparing it with $a x^{2}+b x+c=0$, we get
$a=2, b=-3$ and $c=1$
$\therefore$ Discriminant, $D=b^{2}-4 a c=(-3)^{2}-4 \times 2 \times 1=9-8=1$
(vi) $1-x=2 x^{2}$
$\Rightarrow 2 x^{2}+x-1=0$
Here,
$a=2$,
$b=1$,
$c=-1$
Discriminant $D$ is given by:
$D=b^{2}-4 a c$
$=1^{2}-4 \times 2(-1)$
$=1+8$
$=9$