Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides.
Let $l, b$ and $V$ be the length, breadth and volume of the rectangle, respectively. Then,
$2(l+b)=36$
$\Rightarrow l=18-b$ .....(1)
Volume of the cylinder when revolved about the breadth, $V=\pi l^{2} b$
$\Rightarrow V=\pi(18-b)^{2} b$ $[$ From eq. $(1)]$
$\Rightarrow V=\pi\left(324 b+b^{3}-36 b^{2}\right)$
$\Rightarrow \frac{d V}{d b}=\pi\left(324+3 b^{2}-72 b\right)$
For the maximum or minimum values of $V$, we must have
$\frac{d V}{d b}=0$
$\Rightarrow \pi\left(324+3 b^{2}-72 b\right)=0$
$\Rightarrow 324+3 b^{2}-72 b=0$
$\Rightarrow b^{2}-24 b+108=0$
$\Rightarrow b^{2}-6 b-18 b+108=0$
$\Rightarrow(b-6)(b-18)=0$
$\Rightarrow b=6,18$
Now,
$\frac{d^{2} V}{d b^{2}}=\pi(6 b-72)$
At $b=6:$
$\frac{d^{2} V}{d b^{2}}=\pi(6 \times 6-72)$
$\Rightarrow \frac{d^{2} V}{d b^{2}}=-36 \pi<0$
At $b=18:$
$\frac{d^{2} V}{d b^{2}}=\pi(6 \times 18-72)$
$\Rightarrow \frac{d^{2} V}{d b^{2}}=36 \pi>0$
Substituting the value of $b$ in eq. (1), we get
$l=18-6=12$
So, the volume is maximum when $l=12 \mathrm{~cm}$ and $b=6 \mathrm{~cm}$.