Find the derivative of the following functions

Question:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): $\left(a x^{2}+\sin x\right)(p+q \cos x)$

Solution:

Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$

By product rule,

$f^{\prime}(x)=\left(a x^{2}+\sin x\right) \frac{d}{d x}(p+q \cos x)+(p+q \cos x) \frac{d}{d x}\left(a x^{2}+\sin x\right)$

$=\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x)$

$=-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)$

Leave a comment