Question:
Find the derivative of 99x at x = 100.
Solution:
Let f(x) = 99x. Accordingly,
$f^{\prime}(100)=\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h}$
$=\lim _{h \rightarrow 0} \frac{99(100+h)-99(100)}{h}$
$=\lim _{h \rightarrow 0} \frac{99 \times 100+99 h-99 \times 100}{h}$
$=\lim _{h \rightarrow 0} \frac{99 h}{h}$
$=\lim _{h \rightarrow 0}(99)=99$
Thus, the derivative of $99 x$ at $x=100$ is 99 .