Find the derivation of each of the following from the first principle:
$\frac{1}{x^{5}}$
Let ,
$f(x)=\frac{1}{x^{5}}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ …(i)
$f(x)=\frac{1}{x^{5}}$
$f(x+h)=\frac{1}{(x+h)^{5}}$
Putting values in (i), we get
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\frac{1}{(\mathrm{x}+\mathrm{h})^{5}}-\frac{1}{\mathrm{x}^{5}}}{\mathrm{~h}}$
$=\lim _{h \rightarrow 0} \frac{(x+h)^{-5}-x^{-5}}{(x+h)-x}$
[Add and subtract x in denominator]
$=\lim _{z \rightarrow x} \frac{z^{-5}-x^{-5}}{z-x}$ where $z=x+h$ and $z \rightarrow x$ as $h \rightarrow 0$
$=(-5) x^{-5-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=-5 x^{-6}$
$=-\frac{5}{x^{6}}$
Hence,
$f^{\prime}(x)=-\frac{5}{x^{6}}$