Find the derivation of each of the following from the first principle:
$\sqrt{\sec x}$
Let
$f(x)=\sqrt{\sec x}$
We need to find the derivative of f(x) i.e. f’(x)
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ …(i)
$f(x)=\sqrt{\sec x}$
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\sqrt{\sec (\mathrm{x}+\mathrm{h})}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{\sec (x+h)}-\sqrt{\sec x}}{h}$
Now rationalizing the numerator by multiplying and divide by the conjugate
of $\sqrt{\sec (\mathrm{x}+\mathrm{h})}-\sqrt{\sec \mathrm{x}}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{\sec (x+h)}-\sqrt{\sec x}}{h} \times \frac{\sqrt{\sec (x+h)}+\sqrt{\sec x}}{\sqrt{\sec (x+h)}+\sqrt{\sec x}}$
Using the formula:
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{\sec (x+h)})^{2}-(\sqrt{\sec x})^{2}}{h(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec (x)}{h(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{\cos (x+h)}-\frac{1}{\cos x}}{(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=\lim _{h \rightarrow 0} \frac{\frac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}}{(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=\lim _{h \rightarrow 0} \frac{\cos x-\cos (x+h)}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
Using the formula:
$\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)$
$=\lim _{h \rightarrow 0} \frac{2 \sin \frac{x+(x+h)}{2} \sin \frac{(x+h)-x}{2}}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 x+h}{2} \sin \frac{h}{2}}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=2 \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}$
$\times \frac{1}{2} \lim _{h \rightarrow 0} \sin \left(\frac{2 x+h}{2}\right)$
$\times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
[Here, we multiply and divide by $\frac{1}{2}$ ]
$=2 \times \frac{1}{2} \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}$
$\times \lim _{h \rightarrow 0} \sin \left(x+\frac{h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$=(1) \times \lim _{h \rightarrow 0} \sin \left(x+\frac{h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$
$\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
Putting h = 0, we get
$=\sin \left[x+\frac{0}{2}\right] \times \frac{1}{\cos (x+0) \cos x(\sqrt{\sec (x+0)}+\sqrt{\sec x})}$
$=\sin x \times \frac{1}{\cos x \cos x(\sqrt{\sec x}+\sqrt{\sec x})}$
$=\frac{\sin x}{\cos ^{2} x(2 \sqrt{\sec x})}$
$=\frac{\sin x}{\cos x} \times \frac{1}{\cos x} \times \frac{1}{2 \sqrt{\sec x}}$
$=\tan x \times \sec x \times \frac{1}{2 \sqrt{\sec x}}\left[\because \frac{\sin x}{\cos x}=\tan x\right] \&\left[\frac{1}{\cos x}=\sec x\right]$
$=\frac{1}{2} \tan x \sqrt{\sec x}$
Hence
$f^{\prime}(x)=\frac{1}{2} \tan x \sqrt{\sec x}$