Find the derivation of each of the following from the first principle:
$\sqrt{a x+b}$
Let
$\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{ax}+\mathrm{b}}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}$ …(i)
$f(x)=\sqrt{a x+b}$
$f(x+h)=\sqrt{a(x+h)+b}$
$=\sqrt{a x+a h+b}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{a x+a h+b}-\sqrt{a x+b}}{h}$
Now rationalizing the numerator by multiplying and divide by the conjugate of
$\sqrt{a x+a h+b}-\sqrt{a x+b}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{a x+a h+b}-\sqrt{a x+b}}{h} \times \frac{\sqrt{a x+a h+b}+\sqrt{a x+b}}{\sqrt{a x+a h+b}+\sqrt{a x+b}}$
Using the formula:
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{a x+a h+b})^{2}-(\sqrt{a x+b})^{2}}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})}$
$=\lim _{h \rightarrow 0} \frac{a x+a h+b-a x-b}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})}$
$=\lim _{h \rightarrow 0} \frac{a h}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})}$
$=\lim _{h \rightarrow 0} \frac{a}{\sqrt{a x+a h+b}+\sqrt{a x+b}}$
Putting h = 0, we get
$=\frac{a}{\sqrt{a x+a(0)+b}+\sqrt{a x+b}}$
$=\frac{a}{\sqrt{a x+b}+\sqrt{a x+b}}$
$=\frac{a}{2 \sqrt{a x+b}}$
Hence,
$f^{\prime}(x)=\frac{a}{2 \sqrt{a x+b}}$