Question:
Find theĀ cubes of the following numbers:
(i) 7
(ii) 12
(iii) 16
(iv) 21
(v) 40
(vi) 55
(vii) 100
(viii) 302
(ix) 301
Solution:
Cube of a number is given by the number raised to the power three.
(i) Cube of $7=7^{3}=7 \times 7 \times 7=343$
(ii) Cube of $12=12^{3}=12 \times 12 \times 12=1728$
(iii) Cube of $16=16^{3}=16 \times 16 \times 16=4096$
(iv) Cube of $21=21^{3}=21 \times 21 \times 21=9261$
(v) Cube of $40=40^{3}=40 \times 40 \times 40=64000$
(vi) Cube of $55=55^{3}=55 \times 55 \times 55=166375$
(vii) Cube of $100=100^{3}=100 \times 100 \times 100=1000000$
(viii) Cube of $302=302^{3}=302 \times 302 \times 302=27543608$
(ix) Cube of $301=301^{3}=301 \times 301 \times 301=27270901$