Find the coordinates of the foot of perpendicular from the point (–1, 3)

Question:

Find the coordinates of the foot of perpendicular from the point (1, 3)  to the line $3 x-4 y-16=0$.

Solution:

Let (ab) be the coordinates of the foot of the perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.

Slope of the line joining $(-1,3)$ and $(a, b), m_{1}=\frac{b-3}{a+1}$

Slope of the line $3 x-4 y-16=0$ or $y=\frac{3}{4} x-4, m_{2}=\frac{3}{4}$

Since these two lines are perpendicular, $m_{1} m_{2}=-1$

$\therefore\left(\frac{b-3}{a+1}\right) \times\left(\frac{3}{4}\right)=-1$

$\Rightarrow \frac{3 b-9}{4 a+4}=-1$

$\Rightarrow 3 b-9=-4 a-4$

$\Rightarrow 4 a+3 b=5$ $\ldots(1)$

Point $(a, b)$ lies on line $3 x-4 y=16$

$\therefore 3 a-4 b=16 \ldots(2)$

On solving equations (1) and (2), we obtain

$a=\frac{68}{25}$ and $b=-\frac{49}{25}$

Thus, the required coordinates of the foot of the perpendicular are $\left(\frac{68}{25},-\frac{49}{25}\right)$.

Leave a comment