Question.
Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, –3) and B is (1, 4).
Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, –3) and B is (1, 4).
Solution:
Here, centre of the circle is O(2, –3)
Let the end points of the diameter be A(x, y) and B(1, 4)
The centre of a circle bisects the diameter.
$\therefore \quad 2=\frac{\mathbf{x}+\mathbf{1}}{\mathbf{2}} \Rightarrow \mathbf{x}+1=4$ or $\mathbf{x}=3$
And $-3=\frac{\mathbf{y}+\mathbf{4}}{\mathbf{2}} \Rightarrow \mathrm{y}+4=-6$ or $\mathrm{y}=-10$
Here, the coordinates of $A$ are $(3,-10)$
Here, centre of the circle is O(2, –3)
Let the end points of the diameter be A(x, y) and B(1, 4)
The centre of a circle bisects the diameter.
$\therefore \quad 2=\frac{\mathbf{x}+\mathbf{1}}{\mathbf{2}} \Rightarrow \mathbf{x}+1=4$ or $\mathbf{x}=3$
And $-3=\frac{\mathbf{y}+\mathbf{4}}{\mathbf{2}} \Rightarrow \mathrm{y}+4=-6$ or $\mathrm{y}=-10$
Here, the coordinates of $A$ are $(3,-10)$