Question:
Find the consecutive even integers whose squares have the sum 340.
Solution:
Let two consecutive even integer be $2 x$ and other $(2 x+2)$
Then according to question
$(2 x)^{2}+(2 x+2)^{2}=340$
$4 x^{2}+4 x^{2}+8 x+4=340$
$8 x^{2}+8 x=340-4$
$8 x^{2}+8 x-336=0$
$8 x^{2}+8 x-336=0$
$8\left(x^{2}+x-42\right)=0$
$\left(x^{2}+x-42\right)=0$
$x^{2}+7 x-6 x-42=0$
$x(x+7)-6(x+7)=0$
$(x+7)(x-6)=0$
$(x+7)=0$
$x=-7$
or
$(x-6)=0$
$x=6$
Since, x being a positive number, so x cannot be negative.
Therefore,
When $x=6$ then even integer
$2 x=2 \times 6$
$=12$
And
$2 x+2=2 \times 6+2$
$=14$
Thus, two consecutive odd positive integer be 12,14