Question:
Find the conjugate of each of the following:
$\frac{1}{(4+3 i)}$
Solution:
Given: $\frac{1}{4+3 i}$
First, we calculate $\frac{1}{4+3 i}$ and then find its conjugate
Now, rationalizing
$=\frac{1}{4+3 i} \times \frac{4-3 i}{4-3 i}$
$=\frac{4-3 i}{(4+3 i)(4-3 i)}$
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{4-3 i}{(4)^{2}-(3 i)^{2}}$
$=\frac{4-3 i}{16-9 i^{2}}$
$=\frac{4-3 i}{16-9(-1)}\left[\because i^{2}=-1\right]$
$=\frac{4-3 i}{16+9}$
$=\frac{4-3 i}{25}$
$=\frac{4}{25}-\frac{3}{25} i$
Hence, $\frac{1}{4+3 i}=\frac{4}{25}-\frac{3}{25} i$
So, a conjugate of $\frac{1}{4+3 i}$ is $\frac{4}{25}+\frac{3}{25} i$