Question:
Find the conjugate of each of the following
$\sqrt{-3}$
Solution:
Given: $z=\sqrt{-3}$
The above can be re – written as
$z=\sqrt{(-1) \times 3}$
$z=\sqrt{3 i^{2}}\left[\because \dot{\mathrm{i}}^{2}=-1\right]$
$z=0+\mathrm{i} \sqrt{3}$
So, the conjugate of $z=0+i \sqrt{3}$ is
$\bar{z}=0-i \sqrt{3}$
Or $\bar{z}=-i \sqrt{3}=-\sqrt{-3}$